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Abstract—The first synthesis of serofendic acids A and B, novel neuroprotective substances isolated from fetal calf serum, is
described. This efficient process, starting from (−)-isosteviol, not only provided substantial amounts of serofendic acids, but also
established their absolute configuration. © 2002 Elsevier Science Ltd. All rights reserved.

Recently, we reported the discovery of novel neuropro-
tective substances, serofendic acids A (1) and B (2), in
lipophilic extracts of fetal calf serum (FCS).1 Serofendic
acids exhibited potent protective action against neuro-
toxicity induced by glutamate and an NO donor. They
were determined by modern NMR techniques to be
members of a unique class of atisane-type diterpenoids
having a methylsulfoxide moiety (Fig. 1). NOESY
experiments revealed that these two compounds are
epimers having opposite configuration at the sulfoxide
group. However, their absolute configuration and the
sterochemistry at sulfoxide group are still unknown.
These compounds are of considerable chemical and
pharmacological interest, so we designed a total synthe-
sis to afford sufficient amounts of 1 and 2 for detailed
characterization.

Our synthetic route is depicted in Scheme 1. Earlier
reports have described the synthesis of atisane-type
diterpenoids. Ihara and co-workers constructed the ati-

sane skeleton by intramolecular Michael reaction and
radical cyclization processes.2 On the other hand,
Coates and Bertram derived the skeleton from naturally
available isosteviol (3).3 We adopted intermediate 4 of
Coates’s synthetic route as our starting material
because it possesses most of the stereogenic centers of
serofendic acids. We planned to introduce the remain-
ing stereogenic center with the assistance of the 16-posi-
tion functional group.

Dehydration of 4 using thionyl chloride gave mainly a
mixture of exo-olefin 5 and endo-olefin 6 in 1.3:1 ratio.
The following oxidation provided a mixture of 7, 8, 9
and 6. This result indicates that since 6 is less prone to
oxidation, a chemoselective dehydration procedure is
necessary. We found that when Martin’s dehydrating
agent4 was used, preparation of the reagent and the
dehydration reaction proceeded in one pot, and the
olefins were obtained with high selectivity (5:6=13:1)
and in high yield (96%). Treatment of 5 with selenium

Figure 1. Structures of serofendic acids A (1) and B (2).
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Scheme 1. (a) Ph-C(CF3)2-OK, (Ph)2S, Br2, CHCl3, rt, 3 h then 4, rt, 3 h, 96%, 5:6=13:1; (b) SeO2, TBHP, CH2Cl2, rt, 5 h, 26%
7, 28% 8, 3% 9; (c) BH3–THF, THF, rt, 3 h then H2O2 aq., NaOH aq., rt, 2 h, 67% 10 from 7, 84% 11 from 8; (d) NaBrO3,
NaHSO3, CH3CN, H2O, rt, 2 h; (e) NaB(OAc)3H, AcOH, CH3CN, 0°C, 5 h, 67% from 11; (f) (i) TsCl, DMAP, pyridine, rt, 24
h, (ii) NaSMe, HMPA, 80°C, 48 h, 68%; (g) Davis’s oxaziridine (2-benzenesulfonyl-3-phenyloxaziridine), CH2Cl2, 0°C, 30 min,
100%.

dioxide afforded 7 and 8 with 9 as a minor by-product.
These alcohols were isolated and the stereochemistry of
7 and 8 was confirmed by means of NOESY experi-
ments. Hydroboration of 7 and 8 gave the syn-
diastereomer 10 and syn-diastereomer 11, respectively.
Thus, the borane reagent selectively approached from
the opposite side to the secondary alcohol. Since the
isomers did not exhibit natural configuration, the sec-
ondary alcohol of 11 was inverted by means of an
oxidation and reduction process. The secondary alcohol
of diol 11 was selectively oxidized by using NaBrO3–
NaHSO3

5 to give the ketoalcohol 12, which was then
reduced with NaB(OAc)3H to yield the diol 13 in 67%
overall yield. Selective tosylation of the resulting diol 13
followed by thiomethylation and simultaneous hydroly-
sis of the methyl ester with NaSMe gave the sulfide 14
in 68% overall yield.

Finally, oxidation of the sulfide group in 14 by using
Davis’s oxaziridine6 quantitatively yielded serofendic
acids A (1) and B (2) as a 1:2 mixture. After separation

of the diastereomers by HPLC, the physico-chemical
properties (1H and 13C NMR, HPLC tR)7 and biologi-
cal activity of the synthetic isomers were found to be
consistent with those of the natural isomers.

Since the amounts of natural serofendic acids available
were insufficient for direct comparison of optical rota-
tion data, the absolute stereochemistry was determined
by chiral derivatization and HPLC–MS analysis.8 The
secondary alcohol of the synthetic 1 was derivatized
with (R)- or (S)-�-methylbenzyl isocyanate to give the
(R)-diastereomer (1a) and (S)-diastereomer (1b),
respectively (Fig. 2a). These diastereomeric carbamates
were separated by reversed-phase HPLC interfaced to a
mass spectrometer operated under electrospray ioniza-
tion (ESI) conditions. Detection of the protonated
molecular ion (m/z 530) in the selected ion monitoring
(SIM) mode allowed us to analyze samples of only a
few micrograms without prior purification. As shown in
Fig. 2b, the mass chromatographic peaks of 1a and 1b
could be baseline-separated, and the retention time of
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Figure 2. (a) Derivatization of serofendic acid A (1) with (R)-
or (S)-�-methylbenzyl isocyanate. (b) Ion trace m/z 530 of
(RS)-carbamate derivatives (1a, 1b) prepared from synthetic
1. (c) Ion trace m/z 530 of (R)-carbamate derivative prepared
from natural 1.

absolute configuration, including the sulfoxide stereo-
chemistry, was determined. Detailed biological studies
are under way.
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